Excess Volumes, Speeds of Sound, and Viscosities for Mixtures of 1,2-Ethanediol and Alkoxy Alcohols with Water at 308.15 K

Venkataramana K. Reddy, Kalluri S. Reddy, and Abburi Krishnaiah*

Department of Chemistry, S. V. University, Tirupati 517 502, India

Excess volume, speed of sound, and viscosity data of binary liquid mixtures of water + 1,2-ethanediol, + 2-methoxyethanol, + 2-ethoxyethanol, and + 2-butoxyethanol have been measured at 308.15 K. The results are used to derive densities and isentropic compressibilities. The excess volumes and deviations in the compressibility are negative while deviations in the viscosity are positive for all four systems. The results are discussed in terms of molecular interactions between like and unlike components.

Introduction

Recently there has been increasing interest (1-4) in the thermophysical properties of binary aqueous organic mixtures. As part of our study (5, 6), we report excess volumes, isentropic compressibilities, and viscosities of water + 1,2-ethanediol, + 2-methoxyethanol, + 2-ethoxyethanol, and + 2-butoxyethanol. Partial molar excess volumes of alkoxy alcohols are compared with those of aqueous solutions of 1-alcohols (7-9). The relative influence of the ether group in the alkoxy alcohol on molecular interactions has been investigated.

Experimental Section

Materials. AR grade (SD's make, India) samples of 1,2ethanediol, 2-methoxyethanol, 2-ethoxyethanol, and 2-butoxyethanol were further purified by standard methods (10) as their densities did not initially agree with those reported in the literature (10). 1,2-Ethanediol was dried over dehydrated sodium sulfate and fractionally distilled. Alkoxy alcohols (2-methoxy, 2-ethoxy, and 2-butoxy) were dried over 4A molecular sieves and fractionally distilled. Deionized water was distilled twice, and the fraction boiling at 373.15 K was collected. The purity of the samples was ascertained by comparing the densities and boiling points with those reported in the literature (10).

Procedure. Excess volumes were measured directly using the batch dilatometer technique described earlier (11), except that three additional dilatometers having a large difference in the size of the limbs were used to cover the lower mole fractions. The performance of the technique was established by measuring the excess volumes of the test system benzene + cyclohexane. The V^E values are reproducible to ± 0.003 cm³·mol⁻¹. A thermostatically controlled, well-stirred water bath with temperature controlled to ± 0.01 K was used for all the measurements. The composition of the mixture was obtained from the mass of the components, and the uncertainty in the mole fraction is estimated to be less than $\pm 5 \times 10^{-4}$.

The liquid mixtures were recovered from the dilatometers using a hypodermic syringe, and used to determine the speed of sound and viscosity. Speeds of sound were measured with a single-crystal ultrasonic interferometer (Mittal Enterprises, New Delhi) at a fixed frequency of 2 MHz. The values are reproducible to $\pm 0.1\%$.

Viscosities were measured using an Ostwald viscometer and were reproducible to $\pm 0.5\%$. Densities of the pure components were measured using a bicapillary pycnometer,

* To whom correspondence should be addressed.

Table 1. Excess Volumes at 308.15 K

<i>x</i> ₁	$V^{\mathbf{E}}/(\mathrm{cm}^{3}\cdot\mathrm{mol}^{-1})$	<i>x</i> ₁	$V^{\mathbf{E}}/(\mathrm{cm}^{3}\cdot\mathrm{mol}^{-1})$				
Water $(1) + 1,2$ -Ethanediol (2)							
0.1046	-0.092	0.5999	-0.365				
0.2029	-0.184	0.6987	-0.334				
0.3005	-0.245	0.8008	-0.281				
0.3986	-0.309	0.8947	-0.175				
0.5012	-0.341						
Water $(1) + 2$ -Methoxyethanol (1)							
0.1034	-0.313	0.6406	-1.005				
0.1923	-0.522	0.6672	-0.998				
0.2978	-0.730	0.7415	-0.916				
0.3944	-0.871	0.8372	-0.693				
0.5527	-0.992	0.9560	-0.209				
Water $(1) + 2$ -Ethoxyethanol (2)							
0.1041	-0.396	0.6990	-1.201				
0.1994	-0.615	0.7918	-1.082				
0.2993	-0.811	0.8469	-0.922				
0.3997	-0.991	0.8996	-0.711				
0.4988	-1.112	0.9491	-0.403				
0.5964	-1.191						
Water $(1) + 2$ -Butoxyethanol (2)							
0.1579	-0.383	0.6970	-0.849				
0.3049	-0.615	0.8047	-0.689				
0.4017	-0.765	0.8972	-0.477				
0.4974	-0.853	0.9497	-0.294				
0 5973	-0.882						

and for mixtures, densities were computed from experimental excess volume data according to the relation

$$\rho = \frac{x_1 M_1 + x_2 M_2}{x_1 V_1 + x_2 V_2 + V^{\rm E}} \tag{1}$$

where M_1 and M_2 are the molecular weights, x_1 and x_2 are the mole fractions, and V_1 and V_2 are the molar volumes of water (1) and 1,2-ethanediol or alkoxy alcohols (2), respectively. Density values are reproducible to $\pm 5 \times 10^{-5}$ g·cm⁻³.

Results

Excess volumes are given in Table 1, and $V^{\rm E}$ as a function of mole fraction is shown in Figure 1. Isentropic compressibilities, $k_{\rm s}$, and deviations in isentropic compressibility, $\Delta k_{\rm s}$, are calculated using the relations

$$k_{\rm s} = 1/U^2 \rho \tag{2}$$

$$\Delta k_{\mathrm{s}} = k_{\mathrm{s}} - (\phi_1 k_{\mathrm{s},1} - \phi_2 k_{\mathrm{s},2}) \tag{3}$$

where k_{s} , $k_{s,1}$, and $k_{s,2}$ are the isentropic compressibilities of

© 1994 American Chemical Society

Figure 1. Mole fraction of water versus excess volumes for water + 1,2-ethanediol (Δ), + 2-methoxyethanol (∇), + 2-ethoxyethanol (\Box), and + 2-butoxyethanol (\Box) at 308.15 K.

Figure 2. Mole fraction of water versus deviations in isentropic compressibility of water + 1,2-ethanediol (Δ), + 2-methoxyethanol (∇), + 2-ethoxyethanol (\bigcirc), and + 2-butoxyethanol (\square) at 308.15 K.

the mixture and components 1 and 2 and ϕ_1 and ϕ_2 are the volume fractions of components 1 and 2, respectively. Deviations in viscosity are obtained by the equation

$$\ln \eta = \ln \eta - (x_1 \ln \eta_1 + x_2 \ln \eta_2) \tag{4}$$

where η , η_1 , and η_2 are the viscosities of the mixture and components 1 and 2, respectively. Data on the density (ρ) , speed of sound (U), isentropic compressibility (k_s) , and viscosity (η) are included in Table 2. The variation of Δk_s with volume fraction and of $\Delta \ln \eta$ with mole fraction is represented in Figures 2 and 3, respectively. The values of $V^{\rm E}$ and η for the system water + 2-methoxyethanol are in agreement, within experimental error, with those reported by Das and Hazra (12).

The data on $V^{\rm E}$, $\Delta k_{\rm s}$, and $\Delta \ln \eta$ are fitted to a general empirical equation of the form (13)

$$X^{\mathbf{E}} = \frac{x_1 x_2 [a_1 + a_2 (x_2 - x_1) + a_3 (x_2 - x_1)^2]}{[1 + a_0 (x_2 - x_1)]}$$
(5)

Table 2. Density, ρ , Speed of Sound, U, Isentropic Compressibility, $k_{\rm s}$, and Viscosity, η , at 308.15 K

compros.		u +18008103, i	, av 000.10 IL						
<i>x</i> ₁	$ ho/(g\cdot cm^{-3})$	$U/(\text{m}\cdot\text{s}^{-1})$	$k_{\rm s}/{\rm TPa^{-1}}$	$\eta/(MPa\cdot s)$					
Water $(1) + 1,2$ -Ethanediol (2)									
0.000	$1.105\ 35$	1629	341	10.473					
0.1046	1.103 26	1641	337	9.207					
0.2029	1.101 42	1647	335	8.051					
0.3005	1.097 73	1661	330	6.899					
0.3986	1.093 42	1675	326	5.846					
0.5012	1.088 03	1683	324	4.779					
0.5999	1.082 14	169 0	324	3.798					
0.6987	1.069 99	1689	328	2.866					
0.8008	1.054 30	1672	339	1.998					
0.8947	1.032 29	1624	367	1.315					
1.0000	0.994 12	1522	434	0.719					
Water $(1) + 2$ -Methoxyethanol (2)									
0.0000	0.952 90	1327	596	1.189					
0.1034	0.958 03	1348	574	1.452					
0.1923	0.962 43	1374	551	1.477					
0.2978	0.968 35	1402	526	1.629					
0.3944	0.973 52	1429	504	1.768					
0.5527	0.983 33	1494	456	1.918					
0.6406	0.989 55	1538	427	2.023					
0.6672	0.991 53	1549	42 0	2.023					
0.7415	0.996 05	1583	401	2.002					
0.8372	0.999 93	1623	379	1.768					
0.9560	0.997 53	1600	392	1.085					
1.0000	0.994 12	1522	434	0.719					
	Water (1) + 2-Ethoxye	ethanol (2)						
0.0000	0.917 97	1266	680	1.370					
0.1041	0.923 65	1280	661	1.418					
0.1944	0.928 13	1297	640	1.621					
0.2933	0.933 75	1320	615	1.785					
0.3997	0.940 59	1347	586	1.954					
0.4988	0.947 94	1380	554	2.148					
0.5964	0.956 96	1421	518	2.307					
0.6990	0.968 46	1481	471	2.385					
0.7918	0.98002	1546	427	2.320					
0.8469	0.986 37	1586	403	2.111					
0.8976	0.992 91	1621	383	1.787					
0.9491	0.995 33	1623	381	1.279					
1.0000	0.994 12	1522	434	0.719					
Water $(1) + 2$ -Butoxyethanol (2)									
0.0000	0.888 73	1283	684	2.193					
0.1579	0.894 37	1292	670	2.327					
0.3047	0.900 41	1306	651	2.388					
0.4017	0.905 65	1313	64 0	2.477					
0.4974	0.912 12	1327	622	2.624					
0.5973	0.918 96	1341	605	2.835					
0.6970	0.928 73	1364	579	2.955					
0.8047	0.941 97	1394	546	2.873					
0.8972	0.961 06	1429	510	2.245					
0.9497	0.977 45	1458	481	1.576					
1.0000	0.994 12	1522	434	0.719					

as a function of mole fraction where a_0 is the skewing parameter, which is included to take into account the skewing behavior and is represented as

$$a_0 = \frac{-2(1-2x_{\text{expt}})}{[1+(1-2x_{\text{expt}})^2]}$$
(6)

where x_{expt} is the mole fraction which corresponds to maximum X^{E} . The parameters a_1, a_2 , and a_3 in eq 5 are obtained by the method of least squares and are given in Table 3 along with the standard deviation, $\sigma(X^{\text{E}})$. Partial molar excess volumes (\bar{V}_i^{E}) have been calculated using the differential form (14) of eq (5). The results of \bar{V}_i^{E} are given in Figure 4.

Discussion

The results given in Table 1 and in Figures 1–to 3 indicate that V^{E} and Δk_{s} are negative whereas $\Delta \ln \eta$ values are positive for the four systems over the entire range of mole fraction. The variation of excess properties with mole fraction is highly unsymmetrical and skewed toward the water-rich region in

Figure 3. Mole fraction of water versus deviations in viscosity for water + 1,2-ethanediol (Δ), + 2-methoxyethanol (∇), +2-ethoxyethanol (\bigcirc), and + 2-butoxyethanol (\square) at 308.15 K.

Table 3.Values of the Parameters of Eq 5 and theStandard Deviation at 308.15 K

X ^E	<i>a</i> ₀	<i>a</i> 1	a2	a_3	$\sigma(X^{\rm E})$				
Water $(1) + 1.2$ -Ethanediol (2)									
$V^{\mathbf{E}}/(\mathbf{cm^{3}\cdot mol^{-1}})$	0.3846	-1.3912	0.0134	0.1313	0.006				
$\Delta k_{\rm s}/{\rm TPa^{-1}}$	0.7373	-248.31	8.36	-41.17	2.7				
$\Delta \ln(\eta/(mPa\cdot s))$	0.3846	2.2275	0.1874	0.0228	0.003				
Water $(1) + 2$ -Methoxyethanol (2)									
$V^{\mathbf{E}}/(\mathbf{cm}^{3}\cdot\mathbf{mol}^{-1})$	0.5505	-3.9779	1.1795	0.2924	0.025				
$\Delta k_{\rm B}/{\rm TPa^{-1}}$	0.8824	-374.16	-24.79	47.09	3.7				
$\Delta \ln(\eta/(mPa.s))$	0.8021	2.8242	0.5181	-0.5271	0.022				
Water $(1) + 2$ -Ethoxyethanol (2)									
$V^{\mathbb{E}}/(\mathbf{cm^{3} \cdot mol^{-1}})$	0.6897	-4.4746	1.6600	-0.6122	0.009				
$\Delta k_{s}/\mathrm{TPa}^{-1}$	0.9081	-363.74	-122.51	47.12	2.6				
$\Delta \ln(\eta/(mPa\cdot s))$	0.8186	2.7858	0.9433	-0.4119	0.035				
Water $(1) + 2$ -Butoxyethanol (2)									
$V^{\mathbf{E}}/(\mathbf{cm^{3}\cdot mol^{-1}})$	0.3846	-3.3555	0.0527	-0.6239	0.023				
$\Delta k_{\rm B}/{\rm TPa}$	0.8824	-129.44	-35.61	60.21	1.7				
$\Delta \ln(\eta/(mPa\cdot s))$	0.9081	2.9424	0.2643	-0.0324	0.062				

mixtures containing alkoxy alcohols. The algebraic values of $V^{\rm E}$ and $\Delta k_{\rm s}$ fall in the sequence 2-ethoxyethanol < 2-methoxyethanol < 2-butoxyethanol < 1,2-ethanediol. The results of $\Delta \ln \eta$ are in the following order: 1,2-ethanediol < 2-methoxyethanol < 2-ethoxyethanol < 2-butoxyethanol. The order in $\Delta \ln \eta$ is in accordance with the size of the noncommon components but different from that observed in $V^{\rm E}$ and $\Delta k_{\rm s}$. The negative $V^{\rm E}$ and $\Delta k_{\rm s}$ and positive $\Delta \ln \eta$ over the entire range of mole fraction may be attributed to the dominance of molecular association between unlike molecules over the dissociation in like molecules.

The behavior of 1,2-ethanediol and alkoxy alcohols in the water-rich region has been investigated by calculating partial molar excess volumes of both the components and is represented in Figure 4. Partial molar excess volumes of component 2, $\overline{V}_2^{\rm E}$ decrease steadily with increasing x_1 , and the decrease is rapid beyond $x_1 \approx 0.8$. Further, values of $\overline{V}_1^{\rm E}$ for water vary with mole fraction. The variation of $\overline{V}_2^{\rm E}$ with x_1 in the region $x_1 > 0.8$ is comparable with that in water + ether systems (6, 15–18) but different from that in water + alcohol systems (7–9, 19) in which a sharp discontinuity has been observed. The results may be attributed to the association between unlike molecules through hydrogen bond formation and enhancement of water-water interactions. The

Figure 4. Mole fraction of water versus partial molal excess volumes for water + 1,2-ethanediol (Δ), and + 2-methoxy-ethanol (∇), + 2-ethoxyethanol (\bigcirc), and + 2-butoxyethanol (\square) at 308.15 K.

possibility of interaction between alkoxy alcohol molecules may be negligible in such high concentrations of water.

Literature Cited

- (1) Sakurai, M. Bull. Chem. Soc. Jpn. 1990, 63, 1965.
- (2) PirilaHonkanen, P. L.; Roustesuo, P. A. J. Chem. Eng. Data 1987, 32, 303.
- (3) Douheret, G.; Pal, A. J. Chem. Thermodyn. 1990, 22, 99.
- (4) Sakurai, M. J. Solution Chem. 1989, 18, 37.
- (5) Rajasekhar, P.; Reddy, K. S. Thermochim. Acta 1987, 117, 379.
- (6) Venkateswarlu, R.; Rajasekhar, P.; Reddy, K. S. Indian J. Chem. 1989, 28A, 160.
- (7) Franks, F.; Ives, D. J. G. Q. Rev. 1966, 1, 20.
- (8) Hoiland, H.; Vikingstad, E. Acta. Chem. Scand. 1976, 30A, 186.
- (9) Kaulgud, M. V.; Rao, K. S. M. J. Chem. Soc., Faraday Trans. 1, 1979, 75, 2237.
- (10) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents. Techniques of Chemistry, 4th ed.; John Wiley and Sons: New York, 1986; Vol. II.
- (11) Reddy, K. S., Naidu, P. R. Can. J. Chem. 1977, 76, 55.
- (12) Das, B.; Hazra, D. K. J. Chem. Eng. Data 1993, 38, 361.
- (13) Handa, Y. P.; Benson, G. C. Fluid Phase Equilib. 1979, 3, 185.
- (14) Goates, J. R.; Ott, J. B.; Moellmer, J. F. J. Chem. Thermodyn. 1977, 9, 249.
- (15) Griffiths, V. S. J. Chem. Soc. 1954, 860.
- (16) Malcoln, G. M.; Rowlinson, J. S. Trans. Faraday Soc. 1957, 53, 921.
- (17) Blandamer, M. J.; Hidden, N. J.; Morcom, K. W.; Smith, R. W.; Treloar, N. C.; Wootten, M. J. Trans. Faraday Soc. 1969, 65, 2633.
- (18) Kiyohara, O.; Benson, G. C. Can. J. Chem. 1977, 55, 1354.
- (19) Larkin, J. A. J. Chem. Thermodyn. 1975, 7, 137.

Received for review January 12, 1994. Accepted on March 11, 1994.

* Abstract published in Advance ACS Abstracts, April 15, 1994.